organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1-Hydroxy-2-oxo-1,2-dihydroacenaphthylen-1-yl)prop-2-enenitrile

M. Nizam Mohideen,^a P. S. Kannan,^b A. Subbiah Pandi,^c* E. Ramesh^d and R. Raghunathan^d

^aDepartment of Physics, The New College, Chennai 600 014, India, ^bDepartment of Physics, SMK Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025. India

Correspondence e-mail: a_spandian@yahoo.com

Received 30 October 2007; accepted 11 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.052; wR factor = 0.169; data-to-parameter ratio = 25.1.

In the title compound, C₁₅H₉NO₂, which is a Baylis-Hillman product, the five-membered ring adopts an envelope conformation. The crystal structure is stabilized by O-H···O intermolecular hydrogen bonds, linking the molecules into pairs around a center of symmetry.

Related literature

For related literature, see: Naveen et al. (2006); Ambrosi et al. (1994); Bernstein et al. (1995); Carta et al. (2002); Cremer & Pople (1975); Dawood et al. (1999); Nardelli (1983); Ohsumi et al. (1998); Sanna et al. (2000); Shi et al. (2002); Sonar et al. (2005).

Experimental

Crystal data

C₁₅H₉NO₂ $M_r = 235.23$ Monoclinic, $P2_1/c$ a = 9.6980 (3) Å b = 10.1923 (3) Å

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K

Data collection

Bruker APEXII CCD area-detector	4109 independent reflections
diffractometer	2803 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.022$
16220 measured reflections	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 164 parameters $wR(F^2) = 0.169$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$ S = 1.03 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 4109 reflections

 $0.25 \times 0.22 \times 0.19 \text{ mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1 - H1 \cdots O2^{i}$	0.82	2.02	2.765 (1)	150

Symmetry code: (i) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

MNM and ASP thank Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2178).

References

- Ambrosi, H. D., Duczek, W. & Jahnisch, K. (1994). Liebigs Ann. Chem. pp. 1013.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.
- Carta, A., Sanna, P., Palomba, M., Vargiu, L., Colla, M. L. & Loddo, R. (2002). Eur. J. Med. Chem. 37, 891-900.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Dawood, K. M., Farag, A. M. & Kandeel, Z. E. (1999). J. Chem. Res. (S), p. 88. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Naveen, S., Kavitha, C. V., Rangappa, K. S., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, 03239-03241.
- Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., Ohishi, K., Suga, Y., Akiyama, Y. & Tsuji, T. (1998). J. Med. Chem. 41, 3022-3032
- Sanna, P., Carta, A. & Nikookar, M. E. R. (2000). Eur. J. Med. Chem. 35, 535-543.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shi, M., Zhao, G. L. & Wu, X. F. (2002). Eur. J. Org. Chem. pp. 3666-3679.
- Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. C61, 078-080.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4756 [doi:10.1107/S1600536807057819]

2-(1-Hydroxy-2-oxo-1,2-dihydroacenaphthylen-1-yl)prop-2-enenitrile

M. Nizam Mohideen, P. S. Kannan, A. Subbiah Pandi, E. Ramesh and R. Raghunathan

Comment

Baylis-Hillman adducts are well known in organic synthesis because of their biological relevance (Shi *et al.*, 2002). Acrylonitriles represent an interesting class of biologically active compounds. Many derivatives of acrylonitriles have been shown to possess antitumor (Ohsumi *et al.*, 1998), antitubercular (Sanna *et al.*, 2000) and antiproliferative activities (Carta *et al.*, 2002). It is well known that acrylonitriles are useful intermediates in organic synthesis and are capable of undergoing many useful organic transformations (Ambrosi *et al.*, 1994), for example, into pyrazole, isoxazole and pyrimidine derivatives (Dawood *et al.*, 1999). Recently, the crystal structures of some bioactive heteroarylacrylonitriles have been reported (Sonar *et al.*, 2005; Naveen *et al.*, 2006). Against this background and in order to obtain detailed information on its molecular conformation, the structural determination of the title compound (I) has been carried out and the results are presented here.

In (I) (Fig. 1), the five-memberd ring (atoms C1, C2, C3, C11, C12) of the acenaphthylene group adopts an envelope conformation with C1 being the out of plane atom. The puckering parameters are $q_2=0.086$ (2) Å and $\varphi=184.5$ (5)° (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters $\Delta_S(C1)$ is 0.58 (1)° (Nardelli, 1983), with atoms O1 and O2 deviating by 1.021 (1) and 0.206 (1)Å from the least squares plane of the ring.

The value of the C14—C15 [1.439 (2) Å] bond length is slighty shorter than the value for C—C single bond because of conjugation effects. The O1—C1—C14—C15, C14—C1—C2=O2, and O1—C1—C2=O2 torsion angles [-51.3 (2), 73.2 (2), and -51.4 (1)°, respectively] describe the relationship of the two oxygen atoms to each other and to the nitrile moiety.

The crystal is stabilized by O—H···O intermolecular hydrogen bonds (Table 1) that generate centrosymmetric hydrogenbonded dimers with a cyclic $R^2_2(10)$ ring system (Bernstein, *et al.*, 1995).

Experimental

A mixture of acenaphthenequinone, (5 mmol), acrylonitrile (10 mmol, 0.66 ml) and DABCO (0.1 mmol) was kept at room temperature for 12 h. This reaction mixture was diluted with ether (20 ml), washed with 2 N HCl and water. The organic layer was dried over anhydrous Na₂SO₄. Ether solvent was evaporated and the residue thus obtained, was purified by silica gel column chromatography to provide the corresponding Baylis-Hillman adduct. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethylacetate.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with O—H distance of 0.82 Å and $u_{iso}(H) = 1.5Ueq(O)$, and C—H distances of 0.93 Å and $U_{iso}(H) = 1.2Ueq(C)$.

Figures

Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.

2-(1-Hydroxy-2-oxo-1,2-dihydroacenaphthylen-1-yl)prop-2-enenitrile

Crystal data	
C ₁₅ H ₉ NO ₂	Z = 4
$M_r = 235.23$	$F_{000} = 488$
Monoclinic, $P2_1/c$	$D_{\rm x} = 1.375 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.6980 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 10.1923 (3) Å	T = 293 (2) K
c = 12.1248 (4) Å	Block, colourless
$\beta = 108.570 \ (1)^{\circ}$	$0.25\times0.22\times0.19~mm$
V = 1136.08 (6) Å ³	

Data collection

'Bruker APEXII CCD area-detector diffractometer'	2803 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
Monochromator: graphite	$\theta_{max} = 32.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 2.7^{\circ}$
ω and π scan	$h = -14 \rightarrow 14$
Absorption correction: none	$k = -12 \rightarrow 15$
16220 measured reflections	$l = -11 \rightarrow 18$
4109 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0952P)^2 + 0.1059P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.169$	$(\Delta/\sigma)_{max} < 0.001$

S = 1.034109 reflections

164 parameters

 $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997), Fc^{*}=kFc[1+0.001xFc²\lambda³/sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct Extinction coefficient: 0.001

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	Uiso*/Ueq
01	0.16425 (10)	0.58159 (9)	0.12796 (9)	0.0528 (2)
H1	0.0786	0.5774	0.0876	0.079*
02	0.13500 (10)	0.40059 (11)	-0.06878 (8)	0.0566 (3)
Ν	0.10202 (17)	0.43772 (17)	0.37898 (13)	0.0737 (4)
C1	0.22679 (11)	0.45533 (11)	0.13915 (10)	0.0401 (2)
C2	0.23713 (12)	0.40259 (11)	0.02072 (10)	0.0428 (3)
C3	0.38837 (12)	0.36483 (11)	0.03838 (11)	0.0429 (3)
C4	0.45780 (16)	0.31235 (13)	-0.03435 (13)	0.0542 (3)
H4	0.4062	0.2876	-0.1101	0.065*
C5	0.61016 (17)	0.29756 (14)	0.01034 (16)	0.0628 (4)
Н5	0.6588	0.2605	-0.0369	0.075*
C6	0.68889 (15)	0.33555 (14)	0.12038 (16)	0.0603 (4)
Н6	0.7892	0.3238	0.1459	0.072*
C7	0.62122 (13)	0.39236 (12)	0.19640 (13)	0.0493 (3)
C8	0.68822 (14)	0.44653 (15)	0.30866 (14)	0.0590 (4)
H8	0.7885	0.4409	0.3430	0.071*
С9	0.60619 (16)	0.50646 (16)	0.36602 (13)	0.0606 (4)
Н9	0.6526	0.5431	0.4386	0.073*
C10	0.45315 (14)	0.51554 (14)	0.31996 (12)	0.0521 (3)
H10	0.3999	0.5569	0.3615	0.062*
C11	0.38503 (12)	0.46227 (11)	0.21295 (10)	0.0412 (2)
C12	0.46947 (11)	0.40296 (11)	0.15199 (11)	0.0409 (2)
C13	0.09463 (17)	0.24185 (14)	0.14739 (14)	0.0569 (3)
H13A	0.0459	0.1891	0.1855	0.068*
H13B	0.1089	0.2127	0.0792	0.068*

supplementary materials

C14	0.14353 (12)	0.35824 (12)	0.19015 (10)	0.0421 (3)
C15	0.12052 (13)	0.40191 (13)	0.29585 (12)	0.0503 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0440 (5)	0.0402 (4)	0.0729 (6)	0.0072 (3)	0.0169 (4)	0.0031 (4)
O2	0.0430 (5)	0.0725 (7)	0.0493 (5)	-0.0024 (4)	0.0075 (4)	0.0010 (4)
Ν	0.0696 (9)	0.0951 (11)	0.0627 (8)	0.0041 (8)	0.0298 (7)	-0.0049 (7)
C1	0.0331 (5)	0.0387 (5)	0.0491 (6)	0.0025 (4)	0.0141 (4)	0.0006 (4)
C2	0.0377 (5)	0.0423 (6)	0.0486 (6)	-0.0022 (4)	0.0138 (5)	0.0027 (4)
C3	0.0401 (5)	0.0387 (5)	0.0530 (6)	-0.0011 (4)	0.0189 (5)	0.0008 (4)
C4	0.0609 (8)	0.0451 (6)	0.0672 (8)	-0.0044 (5)	0.0353 (6)	-0.0038 (6)
C5	0.0637 (8)	0.0455 (7)	0.0974 (11)	0.0035 (6)	0.0514 (9)	0.0006 (7)
C6	0.0409 (6)	0.0469 (7)	0.1014 (12)	0.0050 (5)	0.0345 (7)	0.0088 (7)
C7	0.0346 (5)	0.0411 (6)	0.0722 (8)	0.0005 (4)	0.0169 (5)	0.0104 (5)
C8	0.0352 (6)	0.0570 (7)	0.0756 (9)	-0.0049 (5)	0.0046 (6)	0.0110 (7)
C9	0.0514 (7)	0.0597 (8)	0.0600 (8)	-0.0119 (6)	0.0025 (6)	-0.0017 (6)
C10	0.0483 (7)	0.0514 (7)	0.0549 (7)	-0.0049 (5)	0.0142 (6)	-0.0061 (5)
C11	0.0349 (5)	0.0389 (5)	0.0496 (6)	-0.0010 (4)	0.0135 (4)	0.0007 (4)
C12	0.0325 (5)	0.0363 (5)	0.0548 (6)	-0.0001 (4)	0.0151 (4)	0.0041 (4)
C13	0.0596 (8)	0.0479 (7)	0.0703 (8)	-0.0060 (6)	0.0305 (7)	-0.0010 (6)
C14	0.0325 (5)	0.0450 (6)	0.0502 (6)	0.0038 (4)	0.0149 (4)	0.0023 (4)
C15	0.0402 (6)	0.0577 (7)	0.0548 (7)	0.0026 (5)	0.0180 (5)	0.0023 (5)

Geometric parameters (Å, °)

O1—C1	1.4107 (14)	С6—Н6	0.9300
O1—H1	0.8200	C7—C12	1.4009 (16)
O2—C2	1.2143 (15)	С7—С8	1.420 (2)
N—C15	1.1387 (19)	C8—C9	1.357 (2)
C1—C11	1.5120 (15)	С8—Н8	0.9300
C1—C14	1.5270 (16)	C9—C10	1.4125 (19)
C1—C2	1.5660 (17)	С9—Н9	0.9300
C2—C3	1.4646 (16)	C10-C11	1.3669 (18)
C3—C4	1.3767 (17)	C10—H10	0.9300
C3—C12	1.4060 (17)	C11—C12	1.4029 (16)
C4—C5	1.411 (2)	C13—C14	1.3208 (19)
C4—H4	0.9300	С13—Н13А	0.9300
C5—C6	1.365 (2)	C13—H13B	0.9300
С5—Н5	0.9300	C14—C15	1.4395 (18)
C6—C7	1.415 (2)		
C1	109.5	C6—C7—C8	128.18 (12)
O1—C1—C11	109.78 (9)	C9—C8—C7	120.14 (12)
O1—C1—C14	111.32 (9)	С9—С8—Н8	119.9
C11—C1—C14	111.01 (9)	С7—С8—Н8	119.9
O1—C1—C2	112.09 (9)	C8—C9—C10	122.71 (13)
C11—C1—C2	102.09 (8)	С8—С9—Н9	118.6

C14—C1—C2	110.21 (9)	С10—С9—Н9		118.6
O2—C2—C3	128.32 (12)	С11—С10—С9		118.60 (13)
O2—C2—C1	123.58 (11)	C11—C10—H10		120.7
C3—C2—C1	108.04 (10)	C9-C10-H10		120.7
C4—C3—C12	119.98 (11)	C10-C11-C12		118.98 (11)
C4—C3—C2	132.82 (12)	C10-C11-C1		132.30 (11)
C12—C3—C2	107.00 (10)	C12—C11—C1		108.71 (10)
C3—C4—C5	117.49 (14)	C7—C12—C11		123.28 (12)
C3—C4—H4	121.3	C7—C12—C3		123.14 (11)
С5—С4—Н4	121.3	C11—C12—C3		113.39 (10)
C6—C5—C4	122.44 (13)	C14—C13—H13A		120.0
С6—С5—Н5	118.8	C14—C13—H13B		120.0
С4—С5—Н5	118.8	H13A—C13—H13B		120.0
C5—C6—C7	121.45 (12)	C13—C14—C15		119.28 (12)
С5—С6—Н6	119.3	C13—C14—C1		126.38 (11)
С7—С6—Н6	119.3	C15-C14-C1		114.33 (10)
C12—C7—C6	115.45 (13)	N-C15-C14		179.29 (16)
C12—C7—C8	116.26 (12)			
O1—C1—C2—O2	-51.37 (15)	C2-C1-C11-C10		170.29 (13)
C11—C1—C2—O2	-168.79 (11)	01—C1—C11—C12		-127.22 (10)
C14—C1—C2—O2	73.20 (14)	C14—C1—C11—C12		109.27 (11)
O1—C1—C2—C3	125.95 (10)	C2-C1-C11-C12		-8.16 (11)
C11—C1—C2—C3	8.53 (11)	C6—C7—C12—C11		-176.91 (11)
C14—C1—C2—C3	-109.48 (10)	C8—C7—C12—C11		-0.44 (17)
O2—C2—C3—C4	-3.5 (2)	C6—C7—C12—C3		-2.27 (17)
C1—C2—C3—C4	179.33 (13)	C8—C7—C12—C3		174.20 (11)
O2—C2—C3—C12	171.23 (12)	C10—C11—C12—C7		1.61 (18)
C1—C2—C3—C12	-5.93 (12)	C1-C11-C12-C7		-179.69 (10)
C12—C3—C4—C5	0.83 (18)	C10-C11-C12-C3		-173.50 (11)
C2—C3—C4—C5	175.02 (12)	C1—C11—C12—C3		5.19 (13)
C3—C4—C5—C6	-1.4 (2)	C4—C3—C12—C7		1.03 (18)
C5—C6—C7—C12	1.73 (19)	C2—C3—C12—C7		-174.52 (10)
C5—C6—C7—C8	-174.25 (14)	C4—C3—C12—C11		176.15 (11)
C12—C7—C8—C9	-1.10 (19)	C2—C3—C12—C11		0.60 (13)
C6—C7—C8—C9	174.85 (13)	O1-C1-C14-C13		129.43 (14)
C7—C8—C9—C10	1.5 (2)	C11—C1—C14—C13		-107.95 (14)
C8—C9—C10—C11	-0.3 (2)	C2-C1-C14-C13		4.42 (17)
C9—C10—C11—C12	-1.22 (19)	O1-C1-C14-C15		-51.36 (13)
C9—C10—C11—C1	-179.54 (12)	C11—C1—C14—C15		71.26 (12)
O1—C1—C11—C10	51.23 (17)	C2-C1-C14-C15		-176.38 (10)
C14—C1—C11—C10	-72.27 (16)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1···O2 ⁱ	0.82	2.02	2.765 (1)	150
Symmetry codes: (i) $-x$, $-y+1$, $-z$.				

